Toll-Like Receptors 2, -3 and -4 Prime Microglia but not Astrocytes Across Central Nervous System Regions for ATP-Dependent Interleukin-1β Release

نویسندگان

  • Laura Facci
  • Massimo Barbierato
  • Carla Marinelli
  • Carla Argentini
  • Stephen D. Skaper
  • Pietro Giusti
چکیده

Interleukin-1β (IL-1β) is a crucial mediator in the pathogenesis of inflammatory diseases at the periphery and in the central nervous system (CNS). Produced as an unprocessed and inactive pro-form which accumulates intracellularly, release of the processed cytokine is strongly promoted by ATP acting at the purinergic P2X7 receptor (P2X7R) in cells primed with lipopolysaccharide (LPS), a Toll-like receptor (TLR) 4 ligand. Microglia are central to the inflammatory process and a major source of IL-1β when activated. Here we show that purified (>99%) microglia cultured from rat cortex, spinal cord and cerebellum respond robustly to ATP-dependent IL-1β release, upon priming with a number of TLR isoform ligands (zymosan and Pam3CSK4 for TLR2, poly(I:C) for TLR3). Cytokine release was prevented by a P2X7R antagonist and inhibitors of stress-activated protein kinases. Enriched astrocytes (≤ 5% microglia) from these CNS regions displayed responses qualitatively similar to microglia but became unresponsive upon eradication of residual microglia with the lysosomotropic agent Leu-Leu-OMe. Activation of multiple TLR isoforms in nervous system pathology, coupled with elevated extracellular ATP levels and subsequent P2X7R activation may represent an important route for microglia-derived IL-1β. This phenomenon may have important consequences for neuroinflammation and its position to the common pathology of CNS diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microglial Heparan Sulfate Proteoglycans Facilitate the Cluster-of-Differentiation 14 (CD14)/Toll-like Receptor 4 (TLR4)-Dependent Inflammatory Response.

Microglia rapidly mount an inflammatory response to pathogens in the central nervous system (CNS). Heparan sulfate proteoglycans (HSPGs) have been attributed various roles in inflammation. To elucidate the relevance of microglial HSPGs in a pro-inflammatory response we isolated microglia from mice overexpressing heparanase (Hpa-tg), the HS-degrading endoglucuronidase, and challenged them with l...

متن کامل

Extracellular adenosine 5'-triphosphate and lipopolysaccharide induce interleukin-1β release in canine blood.

Binding of extracellular adenosine 5'-triphosphate (ATP) or lipopolysaccharide (LPS) to the damage-associated molecular pattern receptor P2X7 or the pathogen-associated molecular pattern receptor Toll-like receptor (TLR)4, respectively, can induce the release of the pleiotropic cytokine interleukin (IL)-1β in humans and mice. However, the release of IL-1β in dogs remains poorly defined. Using a...

متن کامل

Increased IRAK-4 Kinase Activity in Alzheimer’s Disease; IRAK-1/4 Inhibitor I Prevents Pro-inflammatory Cytokine Secretion but not the Uptake of Amyloid Beta by Primary Human Glia

Alzheimer’s disease (AD) is characterized by the deposition of amyloid-β (Aβ), which is associated with a neuroinflammatory response involving microglia and astrocytes. This neuroinflammatory response has detrimental effects on disease progression but also has a beneficial function on removal of excess Aβ. Microglia and astrocytes are involved in the clearance of Aβ from the brain, but neuroinf...

متن کامل

The role of glia in neurological disease

Glial cells form a network in the central nervous system to support neurons and interact with them. The glia consist essentially of astrocytes that help with the nutrition of neurons and react in some cases of injury, oligodendrocytes that produce myelin, and microglia that are derived from the haemopoietic system and are concerned with the immunological defense of the nervous system. Experimen...

متن کامل

The role of glia in neurological disease

Glial cells form a network in the central nervous system to support neurons and interact with them. The glia consist essentially of astrocytes that help with the nutrition of neurons and react in some cases of injury, oligodendrocytes that produce myelin, and microglia that are derived from the haemopoietic system and are concerned with the immunological defense of the nervous system. Experimen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014